Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2020
Perbandingan Tingkat Akurasi Prediksi Aritmia dengan Menggunakan Algoritma K-Nearest Neighbor dan Decision Tree
Dublin Core
Title
Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2020
Perbandingan Tingkat Akurasi Prediksi Aritmia dengan Menggunakan Algoritma K-Nearest Neighbor dan Decision Tree
Perbandingan Tingkat Akurasi Prediksi Aritmia dengan Menggunakan Algoritma K-Nearest Neighbor dan Decision Tree
Subject
Aritmia, detak jantung, decision tree, K Nearest Neighbor
Arrhythmia, heart rate, decision tree, K Nearest Neighbors
Arrhythmia, heart rate, decision tree, K Nearest Neighbors
Description
Covid-19 sedang melanda seluruh dunia. Tidak heran semua hal selalu dikait-kaitkan dengan virus ini. Sejak virus ini menyebar ke segala penjuru dunia, seolah-olah penyakit/ancaman selain covid-19 hilang begitu saja. Namun tidak dipungkiri bahwa nyatanya ancaman-ancaman lain pun masih ada dan sama berbahanya. Contohnya seperti aritmia. Aritmia adalah kondisi gangguan yang terjadi pada irama jantung. Penderita aritmia bisa merasakan irama jantungnya terlalu cepat, terlalu lambat, atau tidak teratur. Dalam keadaan normal, jantung berdetak sebanyak 60 hingga 100 kali per menit. Namun jika seseorang mempunyai aritmia, detak jantungnya bisa kurang dari 60 kali permenit atau sering disebut bradikardia dan juga bisa lebih dari 100 kali berdetak permenit yang disebut takikardia. Aritmia normal terjadi pada kondisi jantung yang sehat. Namun bila terjadi terus menerus atau berulang, aritmia bisa menandakan adanya masalah pada organ jantung. Komplikasi yang dapat ditimbulkan dari aritmia jika tidak menghiraukannya bisa berujung fatal, seperti stroke, gagal jantung akibat penggumpalan darah, sering pingsan, dan kematian mendadak. Namun, nyatanya banyak orang yang masih meremehkan penyakit ini. Walaupun dampaknya kecil jika terus berlanjut akan mengalami gejala lain yang lebih buruk. Penggunaan metode Decision Tree dinilai cukup efektif dalam mengkategorikan gangguan pada jantung, hasilnya dapat ditentukan apakah termasuk penyakit bradikardia, normal, dan/atau takikardia. Untuk mendapatkan hasil yang lebih akurat, dilakukan pengecekan menggunakan algoritma K Nearest Neighbor. Perbandingan dilakukan dari dua metode yang telah dijalankan. Analisa yang digunakan berdasarkan parameter detak jantung seseorang, tekanan darah, kadar kafein, tekanan stres seseorang. Hasil akhirnya, prediksi gejala aritmia dapat terdeteksi dengan baik dan dapat meningkatkan kewaspadaan penderita.
Covid-19 is spreading around the world. No wonder everything is related to this virus. Since this virus has spread throughout the world, it has been as if diseases / threats other than Covid-19 just disappeared. However, it cannot be denied that other threats still exist and are equally dangerous. Examples such as arrhythmias. Arrhythmias are conditions that occur in the rhythm of the heart. People with arrhythmias can feel their heart rhythm is too fast, too slow, or irregular. Under normal circumstances, the heart beats 60 to 100 beats per minute. However, if someone has an arrhythmia, their heart rate can be less than 60 beats per minute or often called bradycardia and it can be more than 100 beats per minute which is called tachycardia. Arrhythmias are normal if the heart is healthy. However, if it occurs continuously or repeatedly, arrhythmias can indicate a problem with the heart organ. Complications that can arise from arrhythmias if ignored can be fatal, such as stroke, heart failure due to blood clots, frequent fainting, and sudden death. However, in fact there are still many people who underestimate this disease. Although the impact is small, if it continues, you will experience other symptoms that are more severe. The use of the Decision Tree method is considered quite effective in categorizing heart disorders, the results can be determined whether it includes bradycardia, normal, and / or tachycardia. To get a more accurate result, check using the K Nearest Neighbors algorithm. Comparisons are made of the two methods that have been carried out. The analysis used is based on the parameters of a person's heart rate, blood pressure, caffeine level, and a person's stress pressure. The end result, arrhythmia symptom prediction can be detected properly and can increase patient awareness.
Covid-19 is spreading around the world. No wonder everything is related to this virus. Since this virus has spread throughout the world, it has been as if diseases / threats other than Covid-19 just disappeared. However, it cannot be denied that other threats still exist and are equally dangerous. Examples such as arrhythmias. Arrhythmias are conditions that occur in the rhythm of the heart. People with arrhythmias can feel their heart rhythm is too fast, too slow, or irregular. Under normal circumstances, the heart beats 60 to 100 beats per minute. However, if someone has an arrhythmia, their heart rate can be less than 60 beats per minute or often called bradycardia and it can be more than 100 beats per minute which is called tachycardia. Arrhythmias are normal if the heart is healthy. However, if it occurs continuously or repeatedly, arrhythmias can indicate a problem with the heart organ. Complications that can arise from arrhythmias if ignored can be fatal, such as stroke, heart failure due to blood clots, frequent fainting, and sudden death. However, in fact there are still many people who underestimate this disease. Although the impact is small, if it continues, you will experience other symptoms that are more severe. The use of the Decision Tree method is considered quite effective in categorizing heart disorders, the results can be determined whether it includes bradycardia, normal, and / or tachycardia. To get a more accurate result, check using the K Nearest Neighbors algorithm. Comparisons are made of the two methods that have been carried out. The analysis used is based on the parameters of a person's heart rate, blood pressure, caffeine level, and a person's stress pressure. The end result, arrhythmia symptom prediction can be detected properly and can increase patient awareness.
Creator
Deny Lukman Syarif , Khoerul Umam
Publisher
Universitas Semarang
Date
27 Oktober 2020
Contributor
Sri Wahyuni
Rights
ISSN: 2614-1205
Format
PDF
Language
Indonesian
Type
Text
Coverage
Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2020
Files
Citation
Deny Lukman Syarif , Khoerul Umam, “Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2020
Perbandingan Tingkat Akurasi Prediksi Aritmia dengan Menggunakan Algoritma K-Nearest Neighbor dan Decision Tree,” Repository Horizon University Indonesia, accessed May 10, 2025, https://repository.horizon.ac.id/items/show/3469.
Perbandingan Tingkat Akurasi Prediksi Aritmia dengan Menggunakan Algoritma K-Nearest Neighbor dan Decision Tree,” Repository Horizon University Indonesia, accessed May 10, 2025, https://repository.horizon.ac.id/items/show/3469.