Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2021
Klasifikasi Radiografi Pasien COVID-19 dengan Image Processing dan Support Vector Machine
Dublin Core
Title
Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2021
Klasifikasi Radiografi Pasien COVID-19 dengan Image Processing dan Support Vector Machine
Klasifikasi Radiografi Pasien COVID-19 dengan Image Processing dan Support Vector Machine
Subject
image processing, COVID, machine learning, svm
Description
Pandemi COVID-19 yang telah merebah sejak tahun 2019 hingga saat ini. Hampir semua kasus melibatkan penginfeksian paru – paru oleh virus tersebut. Salah satu cara diagnosa cepat yang diambil oleh pakar adalah dengan menggunakan radiografi pada paru – paru pasien. Diperlukan analisa hasil yang cepat dan akurat dengan bantuan machine learning. Pada penelitian ini proses klasifikasi hasil radiografi dilakukan dengan menggunakan pengolahan citra serta machine learning dengan algoritma Support Vector Machine. Pelatihan serta pengujian validasi model dilakukan pada dataset citra positif dan negatif radiografi paru – paru pada pasien COVID-19 yang diambil pada 10-06-2021 di situs penyedia dataset Kaggle.com. Tahapan dalam peneitian ini yakni data preprocessing, data extraction dan data classification. Data preprocessing yakni mempersiapkan data mentah menjadi data yang siap untuk dipakai seperti melakukan proses pengolahan citra dengan beberapa kombinasi teknik image processing seperti scaling, de noising, contrast enhancement dan segmentation. Data extraction yakni mengekstraksi beberapa fitur dari citra yang diperlukan untuk pengklasifikasian dengan menggunakan Gray Level Co Occurrence Matrix. Data classification yakni melakukan uji akurasi machine learning terhadap model penelitian menggunakan algoritma Support Vector Machine. Hasil pengujian menunjukkan tingkat akurasi tertinggi diperoleh oleh kombinasi model pengolahan citra serta Support Vector Machine dengan hasil mencapai 94-96%.
The COVID-19 pandemic that has spread since 2019 until now. Almost all cases involve infection of the lungs by the virus. One way of rapid diagnosis taken by experts is to use radiographs of the patient's lungs. Fast and accurate analysis of results can be achieved with the help of machine learning. In this study, the classification process of radiograph is carried out using image processing and machine learning with the Support Vector Machine algorithm. Training and model validation testing were carried out on the positive and negative image dataset of lung radiographs from COVID-19 patients taken on 10-06-2021 on the dataset provider site Kaggle.com. The stages in this research are data preprocessing, data extraction and data classification. Data preprocessing is to prepare raw data into ready-to-use data using several combinations of image processing techniques such as scaling, de-noising, contrast enhancement and segmentation. Data extraction is to extract several features from the image that are needed for classification using Gray Level Co-Occurrence Matrix. Data classification is to test the machine learning accuracy of the research model using the Support Vector Machine algorithm. The test results show that the highest level of accuracy is obtained by a combination of image processing models and Support Vector Machine with results reaching 94-96%.
The COVID-19 pandemic that has spread since 2019 until now. Almost all cases involve infection of the lungs by the virus. One way of rapid diagnosis taken by experts is to use radiographs of the patient's lungs. Fast and accurate analysis of results can be achieved with the help of machine learning. In this study, the classification process of radiograph is carried out using image processing and machine learning with the Support Vector Machine algorithm. Training and model validation testing were carried out on the positive and negative image dataset of lung radiographs from COVID-19 patients taken on 10-06-2021 on the dataset provider site Kaggle.com. The stages in this research are data preprocessing, data extraction and data classification. Data preprocessing is to prepare raw data into ready-to-use data using several combinations of image processing techniques such as scaling, de-noising, contrast enhancement and segmentation. Data extraction is to extract several features from the image that are needed for classification using Gray Level Co-Occurrence Matrix. Data classification is to test the machine learning accuracy of the research model using the Support Vector Machine algorithm. The test results show that the highest level of accuracy is obtained by a combination of image processing models and Support Vector Machine with results reaching 94-96%.
Creator
Noviyan Dimas Aji Purnama, Riza Arifudin
Publisher
Universitas Semarang
Date
13 Oktober 2021
Contributor
Sri Wahyuni
Rights
ISSN: 2614-1205
Format
PDF
Language
Indonesian
Type
Text
Coverage
Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2021
Files
Citation
Noviyan Dimas Aji Purnama, Riza Arifudin, “Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2021
Klasifikasi Radiografi Pasien COVID-19 dengan Image Processing dan Support Vector Machine,” Repository Horizon University Indonesia, accessed April 4, 2025, https://repository.horizon.ac.id/items/show/3483.
Klasifikasi Radiografi Pasien COVID-19 dengan Image Processing dan Support Vector Machine,” Repository Horizon University Indonesia, accessed April 4, 2025, https://repository.horizon.ac.id/items/show/3483.