TELKOMNIKA Telecommunication, Computing, Electronics and Control
Comparing random forest and support vector machines for breast cancer classification

Dublin Core

Title

TELKOMNIKA Telecommunication, Computing, Electronics and Control
Comparing random forest and support vector machines for breast cancer classification

Subject

Breast cancer, Random forest, Support vector machines

Description

There are more than 100 types of cancer around the world with different symptoms and difficulty in predicting its appearance in a person due to its random and sudden attack method. However, the appearance of cancer is generally marked by the growth of some abnormal cell. Someone might be diagnosed early and quickly treated, but the cancerous cell most times hides in the body of its victim and reappear, only to kill its sufferer. One of the most common cancers is breast cancer. According to Ministry of Health, in 2018, breast cancer attacked 42 out of every 100.000 people in Indonesia with approximately 17 deaths. In addition, the Ministry recorded a yearly increase in cancer patients. Therefore, there is adequate need to be able to determine those affected by this disease. This study applied the Boruta feature selection to determine the most important features in making a machine learning model. Furthermore, the Random Forest (RF) and Support Vector Machines (SVM) were the machine learning model used, with highest accuracies of 90% and 95% respectively. From the results obtained, the SVM is a better model than random forest in terms of accuracy.

Creator

Chelvian Aroef, Yuda Rivan, Zuherman Rustam

Source

DOI: 10.12928/TELKOMNIKA.v18i2.14785

Publisher

Universitas Ahmad Dahlan

Date

April 2020

Contributor

Sri Wahyuni

Rights

ISSN: 1693-6930

Relation

http://journal.uad.ac.id/index.php/TELKOMNIKA

Format

PDF

Language

English

Type

Text

Coverage

TELKOMNIKA Telecommunication, Computing, Electronics and Control

Files

Collection

Tags

,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon ,

Citation

Chelvian Aroef, Yuda Rivan, Zuherman Rustam, “TELKOMNIKA Telecommunication, Computing, Electronics and Control
Comparing random forest and support vector machines for breast cancer classification,” Repository Horizon University Indonesia, accessed April 4, 2025, https://repository.horizon.ac.id/items/show/3686.