TELKOMNIKA Telecommunication, Computing, Electronics and Control
A new model for large dataset dimensionality reduction based on teaching learning-based optimization and logistic regression

Dublin Core

Title

TELKOMNIKA Telecommunication, Computing, Electronics and Control
A new model for large dataset dimensionality reduction based on teaching learning-based optimization and logistic regression

Subject

Feature selection, FSS, IDS, NTLBO, Subset, TLBO

Description

One of the human diseases with a high rate of mortality each year is breast cancer (BC). Among all the forms of cancer, BC is the commonest cause of death among women globally. Some of the effective ways of data classification are data mining and classification methods. These methods are particularly efficient in the medical field due to the presence of irrelevant and redundant attributes in medical datasets. Such redundant attributes are not needed to obtain an accurate estimation of disease diagnosis. Teaching learning-based optimization (TLBO) is a new metaheuristic that has been successfully applied to several intractable optimization problems in recent years. This paper
presents the use of a multi-objective TLBO algorithm for the selection of
feature subsets in automatic BC diagnosis. For the classification task in this work, the logistic regression (LR) method was deployed. From the results, the projected method produced better BC dataset classification accuracy (classified into malignant and benign). This result showed that the projected TLBO is an efficient features optimization technique for sustaining data-based decision-making systems.

Creator

Hind Raad Ibraheem, Zahraa Faiz Hussain, Sura Mazin Ali, Mohammad Aljanabi, Mostafa Abdulghafoor Mohammed, Tole Sutikno

Source

DOI: 10.12928/TELKOMNIKA.v18i3.13764

Publisher

Universitas Ahmad Dahlan

Date

June 2020

Contributor

Sri Wahyuni

Rights

ISSN: 1693-6930

Relation

http://journal.uad.ac.id/index.php/TELKOMNIKA

Format

PDF

Language

English

Type

Text

Coverage

TELKOMNIKA Telecommunication, Computing, Electronics and Control

Files

Collection

Tags

,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon ,

Citation

Hind Raad Ibraheem, Zahraa Faiz Hussain, Sura Mazin Ali, Mohammad Aljanabi, Mostafa Abdulghafoor Mohammed, Tole Sutikno, “TELKOMNIKA Telecommunication, Computing, Electronics and Control
A new model for large dataset dimensionality reduction based on teaching learning-based optimization and logistic regression,” Repository Horizon University Indonesia, accessed November 21, 2024, https://repository.horizon.ac.id/items/show/3802.