TELKOMNIKA Telecommunication, Computing, Electronics and Control
UNet-VGG16 with transfer learning for MRI-based brain tumor segmentation

Dublin Core

Title

TELKOMNIKA Telecommunication, Computing, Electronics and Control
UNet-VGG16 with transfer learning for MRI-based brain tumor segmentation

Subject

Fully convolution network, Image segmentation, Transfer learning, U-Net, VGG16

Description

A brain tumor is one of a deadly disease that needs high accuracy in its
medical surgery. Brain tumor detection can be done through magnetic
resonance imaging (MRI). Image segmentation for the MRI brain tumor aims to separate the tumor area (as the region of interest or ROI) with a healthy brain and provide a clear boundary of the tumor. This study classifies the ROI and non-ROI using fully convolutional network with new architecture, namely UNet-VGG16. This model or architecture is a hybrid of U-Net and VGG16 with transfer Learning to simplify the U-Net architecture. This method has a high accuracy of about 96.1% in the learning dataset. The validation is done by calculating the correct classification ratio (CCR) to comparing the segmentation result with the ground truth. The CCR value shows that this UNet-VGG16 could recognize the brain tumor area with a mean of CCR value is about 95.69%.

Creator

Anindya Apriliyanti Pravitasari, Nur Iriawan, Mawanda Almuhayar, Taufik Azmi, Irhamah, Kartika Fithriasari, Santi Wulan Purnami, Widiana Ferriastuti

Source

DOI: 10.12928/TELKOMNIKA.v18i3.14753

Publisher

Universitas Ahmad Dahlan

Date

June 2020

Contributor

Sri Wahyuni

Rights

ISSN: 1693-6930

Relation

http://journal.uad.ac.id/index.php/TELKOMNIKA

Format

PDF

Language

English

Type

Text

Coverage

TELKOMNIKA Telecommunication, Computing, Electronics and Control

Files

Collection

Tags

,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon ,

Citation

Anindya Apriliyanti Pravitasari, Nur Iriawan, Mawanda Almuhayar, Taufik Azmi, Irhamah, Kartika Fithriasari, Santi Wulan Purnami, Widiana Ferriastuti, “TELKOMNIKA Telecommunication, Computing, Electronics and Control
UNet-VGG16 with transfer learning for MRI-based brain tumor segmentation,” Repository Horizon University Indonesia, accessed November 22, 2024, https://repository.horizon.ac.id/items/show/3831.