TELKOMNIKA Telecommunication, Computing, Electronics and Control
Software engineering model based smart indoor localization system using deep-learning

Dublin Core

Title

TELKOMNIKA Telecommunication, Computing, Electronics and Control
Software engineering model based smart indoor localization system using deep-learning

Subject

CNN, Deep learning, GPS, Indoor localization, Raspberry Pi, Robotic car, Software engineering

Description

During the last few years, the allocation of objects or persons inside a specific building is highly required. It is well known that the global positioning system (GPS) cannot be adopted in indoor environment due to the lack of signals. Therefore, it is important to discover a new way that works inside. The proposed system uses the deep learning techniques to classify places based on capturing images. The proposed system contains two parts: software part and hardware part. The software part is built based on software engineering model to increase the reliability, flexibility, and scalability. In addition, this part, the dataset is collected using the Raspberry Pi III camera as training and validating data set. This dataset is used as an input to the proposed deep learning model. In the hardware part, Raspberry Pi III is used for loading the proposed model and producing prediction results and a camera that is used to collect the images dataset. Two wheels’ car is adopted as an object for introducing indoor localization project. The obtained training accuracy is 99.6% for training dataset and 100% for validating dataset.

Creator

Zainab Mohammed Resan, Muayad Sadik Croock

Source

DOI: 10.12928/TELKOMNIKA.v18i4.14318

Publisher

Universitas Ahmad Dahlan

Date

August 2020

Contributor

Sri Wahyuni

Rights

ISSN: 1693-6930

Relation

http://journal.uad.ac.id/index.php/TELKOMNIKA

Format

PDF

Language

English

Type

Text

Coverage

TELKOMNIKA Telecommunication, Computing, Electronics and Control

Files

Collection

Tags

,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon ,

Citation

Zainab Mohammed Resan, Muayad Sadik Croock, “TELKOMNIKA Telecommunication, Computing, Electronics and Control
Software engineering model based smart indoor localization system using deep-learning,” Repository Horizon University Indonesia, accessed November 21, 2024, https://repository.horizon.ac.id/items/show/3971.