TELKOMNIKA Telecommunication, Computing, Electronics and Control
Dorsal hand veins features extraction and recognition by correlation coefficient

Dublin Core

Title

TELKOMNIKA Telecommunication, Computing, Electronics and Control
Dorsal hand veins features extraction and recognition by correlation coefficient

Subject

Contrast enhancement, Correct recognition rate, Correlation coefficient, Noise removing, Veins recognition

Description

One of the most convenient biometrics approaches for identifying a person is dorsal hand veins recognition. In recent years, the dorsal hand veins have acquired increasing attention because of its characteristics such as universal, unique, permanent, contactless, and difficulty of forging, also, the veins remain unchanged when a human being grows. The captured dorsal hand veins image suffers from the many differences in lighting conditions, brightness, existing hair, and amount of noise. To solve these problems, this paper aims to extract and recognize dorsal hand veins based on the largest correlation coefficient. The proposed system consists of three stages: 1) preprocessing the image, 2) feature extraction, and 3) matching. In order to evaluate the proposed system performance, two databases have been employed. The test results illustrate the correct recognition rate (CRR), and accuracy of the first database are 99.38% and 99.46%, respectively, whereas the CRR, and accuracy of the second database are 99.11% and 99.07% respectively. As a result, we conclude that our proposed method for recognizing dorsal hand veins is feasible and effective.

Creator

Maha A. Rajab, Kadhim M. Hashim

Source

DOI: 10.12928/TELKOMNIKA.v20i4.22068

Publisher

Universitas Ahmad Dahlan

Date

August 2022

Contributor

Sri Wahyuni

Rights

ISSN: 1693-6930

Relation

http://journal.uad.ac.id/index.php/TELKOMNIKA

Format

PDF

Language

English

Type

Text

Coverage

TELKOMNIKA Telecommunication, Computing, Electronics and Control

Files

Collection

Tags

,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon ,

Citation

Maha A. Rajab, Kadhim M. Hashim, “TELKOMNIKA Telecommunication, Computing, Electronics and Control
Dorsal hand veins features extraction and recognition by correlation coefficient,” Repository Horizon University Indonesia, accessed November 21, 2024, https://repository.horizon.ac.id/items/show/4376.