Improving Recognition of SIBI Gesture by Combining Skeleton and Hand Shape Features

Dublin Core

Title

Improving Recognition of SIBI Gesture by Combining Skeleton and Hand Shape Features

Subject

SIBI, Long Short Term Memory, Gated Recurrent Unit, Feature Concatenation

Description

SIBI (Sign System for Indonesian Language) is an official sign language system used in school for hearing impairment students in Indonesia. This work uses the skeleton and hand shape features to classify SIBI gestures. In order to improve the performance of the gesture classification system, we tried to fuse the features in several different ways. The accuracy results achieved by the feature fusion methods are, in descending order of accuracy: 88.016%, when using sequence-feature-vector concatenation, 85.448% when using Conneau feature vector concatenation, 83.723% when using feature-vector concatenation, and 49.618% when using simple feature concatenation. The sequence-feature-vector concatenation techniques yield noticeably better results than those achieved using single features (82.849% with
skeleton feature only, 55.530% for the hand shape feature only). The experiment results show that the combined features of the whole gesture sequence can better distinguish one gesture from another in SIBI than the combined features of each gesture frame. In addition to finding the best feature combination technique, this study also found the most suitable Recurrent Neural Network (RNN) model for recognizing SIBI. The models tested are 1-layer, 2-layer LSTM, and GRU. The experimental results show that the 2-layer bidirectional LSTM has the best performance.

Creator

Erdefi Rakun and Noer Fitria Putra Setyono

Source

http://dx.doi.org/10.21609/jiki.v15i2.1014

Publisher

Faculty of Computer Science Universitas Indonesia

Date

2022-07-02

Contributor

Sri Wahyuni

Rights

e-ISSN : 2502-9274 printed ISSN : 2088-7051

Format

PDF

Language

English

Type

Text

Coverage

Jurnal IlmuKomputer dan Informasi (Journal of Computer Science and Information)

Files

Tags

,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon ,

Citation

Erdefi Rakun and Noer Fitria Putra Setyono, “Improving Recognition of SIBI Gesture by Combining Skeleton and Hand Shape Features,” Repository Horizon University Indonesia, accessed May 22, 2025, https://repository.horizon.ac.id/items/show/8842.