Gender Prediction of Indonesian Twitter Users Using Tweet and Profile Features

Dublin Core

Title

Gender Prediction of Indonesian Twitter Users Using Tweet and Profile Features

Subject

gender, Twitter, user, classification, feature extraction, demography

Description

The increasing use of social media generates huge amounts of data which in turn triggers research into
social media analytics. Social media contents can be analyzed to explore public opinion on an issue or
provide the insights reflecting proxy indicators towards real-world events. Understanding the demographics of social media users can increase the potential for applications of sentiment analysis, topic modeling, and other analytical tasks. To map demographics, we need to know the latent attributes of users, such as age, gender, occupation and location of residence. Since this attribute is not directly available, we need to do some inference from the social media data. This study aims to predict the gender attribute given a Twitter user account. We conducted experiments with several supervised classifiers with feature extraction, including the use of word embedding representations. The results of this study indicate that the combination of features extracted from Tweet contents and user profile structured data can predict the gender of Twitter users in Indonesia with accuracy above 80%.

Creator

Rahmad Mahendra, Hadi Syah Putra, Douglas Raevan Faisal, Fadzil Rizki

Source

http://dx.doi.org/10.21609/jiki.v15i2.1079

Publisher

Faculty of Computer Science Universitas Indonesia

Date

2022-07-02

Contributor

Sri Wahyuni

Rights

e-ISSN : 2502-9274 printed ISSN : 2088-7051

Format

PDF

Language

English

Type

Text

Coverage

Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)

Files

Tags

,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon ,

Citation

Rahmad Mahendra, Hadi Syah Putra, Douglas Raevan Faisal, Fadzil Rizki, “Gender Prediction of Indonesian Twitter Users Using Tweet and Profile Features,” Repository Horizon University Indonesia, accessed May 22, 2025, https://repository.horizon.ac.id/items/show/8847.