Klasifikasi Kematangan Tanaman Hidroponik Pakcoy Menggunakan
Metode SVM

Dublin Core

Title

Klasifikasi Kematangan Tanaman Hidroponik Pakcoy Menggunakan
Metode SVM

Subject

Classification, Pakcoy, Machine learning, SVM

Description

Pakcoy is a type of vegetable plant belonging to the Brassica family. Pakcoy plants can be cultivated using hydroponic
techniques, namely plant cultivation techniques without soil media. The advantage of cultivating Pakcoy plants using
hydroponic techniques is that it does not require a large area of land, so it is easy to apply in the yard. However, cultivation
with hydroponic techniques has drawbacks such as farmers need to make regular observations to determine the harvest
readiness of each plant. This causes a lack of effectiveness of farmers in cultivating Pakcoy plants. With the development of
Machine Learning technology, a model can classify the maturity of Pakcoy plants based on digital image data. By applying
the Support Vector Machine (SVM) Algorithm, the Machine Learning model can learn to classify a digital image of Pakcoy
plants with the category "Small" to represent immature Pakcoy plants and "Large" to represent mature Pakcoy plants which
results in an accuracy level of above 79%. It can be concluded that Machine Learning can be implemented in Pakcoy cultivation
activities to support hydroponic farmers.

Creator

Hanin Latif Fuadi1
, Lukman Priyambodo2
, Tasya Enjelika Saputri3
, Naura Nazhifah4
, Angga Bagus Prawira5
,
Ibrohim Huzaimi6
, Mas Aly Afandi7
, Eka Setia Nugraha8
, Agung Wicaksono9
, Petrus Kerowe Goran

Publisher

Institut Teknologi Telkom Purwokerto

Date

27-02-2022

Contributor

Fajar bagus W

Format

PDF

Language

Indonesia

Type

Text

Files

Collection

Citation

Hanin Latif Fuadi1 , Lukman Priyambodo2 , Tasya Enjelika Saputri3 , Naura Nazhifah4 , Angga Bagus Prawira5 , Ibrohim Huzaimi6 , Mas Aly Afandi7 , Eka Setia Nugraha8 , Agung Wicaksono9 , Petrus Kerowe Goran, “Klasifikasi Kematangan Tanaman Hidroponik Pakcoy Menggunakan
Metode SVM,” Repository Horizon University Indonesia, accessed May 30, 2025, https://repository.horizon.ac.id/items/show/9120.