Integration of PSO-based advanced supervised learning techniques for classification data mining to predict heart failure
Dublin Core
Title
Integration of PSO-based advanced supervised learning techniques for classification data mining to predict heart failure
Subject
Advanced supervised learning
Classification
Heart failure
Optimization
Particle swarm optimization
Classification
Heart failure
Optimization
Particle swarm optimization
Description
Heart failure (HF) is a global health threat, requiring urgent research in its classification. This study proposes a novel approach for HF classification by integrating advanced supervised learning (ASL) and particle swarm optimization (PSO). ASL techniques like bagging and AdaBoost are employed within the PSO+ASL optimization model to enhance prediction accuracy. PSO optimizes model weights and bias, while ASL addresses overfitting or underfitting issues. Split validation and cross-validation (70:30, 80:20, 90:10 with k-fold=10) are used for further optimization. The testing phase involves 12 classifiers in five groups: decision tree models (DTM), support vector machines (SVM), Naïve Bayes classifiers models (NBCM), logistic regression models (LRM), and lazy model (LM). Evaluating the proposed approach with an HF patient dataset from https://www.kaggle.com, results are compared against the standard model, PSO optimization, and PSO+ASL. Experimental findings demonstrate the superiority of the proposed approach, achieving higher accuracy in HF prediction. The PSO+ASL optimization model with the k-nearest neighbor (k-NN) method exhibits the best classification performance. It consistently achieves the highest accuracy across all tests on dataset composition ratios, with 100% accuracy, f-measure, sensitivity, specificity values, and area under cover (AUC) of 1. The proposed approach serves as a reliable tool for early detection and prevention of HF.
Creator
Mesran1, Remuz Mb Kmurawak2, Agus Perdana Windarto3
Source
Journal homepage: http://telkomnika.uad.ac.id
Date
Aug 30, 2023
Contributor
peri irawan
Format
pdf
Language
english
Type
text
Files
Collection
Citation
Mesran1, Remuz Mb Kmurawak2, Agus Perdana Windarto3, “Integration of PSO-based advanced supervised learning techniques for classification data mining to predict heart failure,” Repository Horizon University Indonesia, accessed January 12, 2026, https://repository.horizon.ac.id/items/show/9853.