TELKOMNIKA Telecommunication, Computing, Electronics and Control
A maximum entropy classification scheme for phishing detection using parsimonious features

Dublin Core

Title

TELKOMNIKA Telecommunication, Computing, Electronics and Control
A maximum entropy classification scheme for phishing detection using parsimonious features

Subject

Classification
Parsimonous features
Phishing
Social engineering

Description

Over the years, electronic mail (e-mail) has been the target of several
malicious attacks. Phishing is one of the most recognizable forms of
manipulation aimed at e-mail users and usually, employs social engineering
to trick innocent users into supplying sensitive information into an imposter
website. Attacks from phishing emails can result in the exposure of
confidential information, financial loss, data misuse, and others. This paper
presents the implementation of a maximum entropy (ME) classification
method for an efficient approach to the identification of phishing emails. Our
result showed that maximum entropy with parsimonious feature space gives
a better classification precision than both the Naïve Bayes and support vector
machine (SVM).

Creator

Emmanuel O. Asani, Adebayo Omotosho, Paul A. Danquah, Joyce A. Ayoola, Peace O. Ayegba, Olumide B. Longe

Source

http://journal.uad.ac.id/index.php/TELKOMNIKA

Date

Jul 13, 2021

Contributor

peri irawan

Format

pdf

Language

english

Type

text

Files

Collection

Tags

,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon ,

Citation

Emmanuel O. Asani, Adebayo Omotosho, Paul A. Danquah, Joyce A. Ayoola, Peace O. Ayegba, Olumide B. Longe, “TELKOMNIKA Telecommunication, Computing, Electronics and Control
A maximum entropy classification scheme for phishing detection using parsimonious features,” Repository Horizon University Indonesia, accessed November 21, 2024, https://repository.horizon.ac.id/items/show/4179.