Accuracy Analysis of Financial Distress Prediction Models for Companies on the IDX WatchlistBoard in2020-2022 Period

Dublin Core

Title

Accuracy Analysis of Financial Distress Prediction Models for Companies on the IDX WatchlistBoard in2020-2022 Period

Subject

Financial Distress, WatchlistBoard IDX, Altman, Grover,Zmijewski, Springate

Description

The research aims to examine the accuracy level of the Altman, Grover, Zmijewski, and Springatefinancial distress prediction models, to determine the most accurate financial distress prediction model in analyzing companies on the IDX WatchlistBoard criteria 5 or 8 between 2020 and 2022. Thisstudyemploysaquantitativemethodwithdescriptiveanalyticaltechniques. Data testingutilizestheKruskal-WallisOne-Way ANOVAtestduetothecomparisonofmorethantwopredictionmodelsandthenon-normaldistributionofthedata. A totalof44samples,purposivelyselectedfromthepopulationof55listedissuerswithintheDPK-BEI, wereused. TheresearchfindingsrevealnosignificantdifferencesintheaccuracyamongtheAltman,Grover,Zmijewski,andSpringatemodels.Thisisevidencedbytheaccuracyresultsbasedonthenumberofcorrectpredictionsfromeachmodel.Zmijewskiemergesasthemostaccuratemodelwitha 67%accuracyrate,followedbyAltmanandGroverat65%each,andSpringatewiththelowestaccuracyat60%.

Creator

Erdina Renaganis Anastasia1*,Fahrul Riza

Source

https://dinastipub.org/DIJEFA/article/view/2151/1471

Publisher

Bunda Mulia University

Date

07January2024

Contributor

Erdina Renaganis Anastasia

Format

PDF

Language

English

Type

Text

Files

Collection

Citation

Erdina Renaganis Anastasia1*,Fahrul Riza, “Accuracy Analysis of Financial Distress Prediction Models for Companies on the IDX WatchlistBoard in2020-2022 Period,” Repository Horizon University Indonesia, accessed March 13, 2025, https://repository.horizon.ac.id/items/show/5868.