Classification of Coffee Fruit Maturity Level based on Multispectral Image Using Naïve Bayes Method

Dublin Core

Title

Classification of Coffee Fruit Maturity Level based on Multispectral Image Using Naïve Bayes Method

Subject

Coffee fruit maturity, Multispectral image, Naïve Bayes

Description

The current research about the classification of coffee fruit ripeness based on multispectral images has been developed using the Convolutional Neural Network (CNN) method to extract patterns from highdimensional multispectral images. The high complexity of CNN allows the model to capture complex features but requires more time and computational resources for model training and testing. Therefore, in this study, classification is performed using a more straightforward method such as Naïve Bayes because its complexity only depends on the number of features and samples. The method only considers each feature independently, so it has high speed and does not require a lot of computational resources.
Naïve Bayes is applied to color and texture features extracted from multispectral images of coffee fruit.
There are 300 features consisting of 60 color features and 240 texture features. Experiments were conducted based on the comparison of training and testing data and the use of each feature. The combination of color and texture features showed better performance than color or texture features alone, with the highest accuracy reaching 91.01%. In conclusion, using Naïve Bayes is still reasonably good in classifying the ripeness of coffee fruit based on multispectral images.

Creator

I’zaz Dhiya ‘Ulhaq, Muhamad Arief Hidayat, and Tio Dharmawan

Source

http://dx.doi.org/10.21609/jiki.v17i2.1181

Publisher

Faculty of Computer Science Universitas Indonesia

Date

2024-06-04

Contributor

Sri Wahyuni

Rights

e-ISSN : 2502-9274 printed ISSN : 2088-7051

Format

PDF

Language

English

Type

Text

Coverage

Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)

Files

Tags

,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon ,

Citation

I’zaz Dhiya ‘Ulhaq, Muhamad Arief Hidayat, and Tio Dharmawan, “Classification of Coffee Fruit Maturity Level based on Multispectral Image Using Naïve Bayes Method,” Repository Horizon University Indonesia, accessed May 22, 2025, https://repository.horizon.ac.id/items/show/8873.