The traditional K-nearest neighbor (KNN) algorithm uses an exhaustive search for a complete training set to predict a single test sample. This procedure can slow down the system to consume more time for huge datasets. The selection of classes for a…
Tags:
Consuming time,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , Educational data mining,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , Jurnal Nasional Informatika,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , kNN,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , Moments,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , Prediction