Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2022
Klasifikasi Penyakit Diabetes Menggunakan Algoritma K-Nearest Neighbor Optimasi K-Fold Cross Validation

Dublin Core

Title

Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2022
Klasifikasi Penyakit Diabetes Menggunakan Algoritma K-Nearest Neighbor Optimasi K-Fold Cross Validation

Subject

Diabetes Mellitus, Data Mining, Klasifikasi, KNN, k-fold cross validation
Diabetes Mellitus, Data Mining, Classification, KNN, k-fold cross validation

Description

Diabetes merupakan penyakit yang terjadi karena adanya peningkatan kadar gula darah yang melebihi batas normal. Penyakit ini juga berisiko pada komplikasi. World Health Organization (WHO) menyatakan jumlah penderita diabetes terus mengalami peningkatan dari tahun ke tahun dan berpotensi meningkat lebih tinggi dibandingkan dengan tahun-tahun sebelumnya. Melihat tingginya angka masyarakat yang terkena diabetes maka perlu dilakukan pendeteksian penyakit diabetes secara dini sebagai upaya untuk meminimalisir munculnya komplikasi dan kematian. Penelitian ini menggunakan data mining dengan metode klasifikasi. Tujuan dari penelitian ini untuk mendapatkan hasil akurasi dan melihat kinerja algoritma. Algoritma klasifikasi yang digunakan adalah algoritma K-Nearest Neighbor (KNN). Dataset yang digunakan adalah PIDD. Dalam penelitian ini data dibagi menjadi 80:20 untuk data training dan data testing. Penelitian ini melakukan k-fold cross validation. Berdasarkan hasil penelitian menunjukkan bahwa metode yang digunakan berhasil memperoleh akurasi yang tinggi dalam memprediksi penyakit diabetes sebesar 78,10%.
Diabetes is a disease that occurs due to an increase in blood sugar levels that exceed normal limits. This disease is also at risk for complications. The World Health Organization (WHO) states that the number of people with diabetes continues to increase from year to year and has the potential to increase higher than in previous years. Seeing the high number of people affected by diabetes, the detection of diabetes is an effort to detect it early, minimize complications and death. In this research implement data mining with classification methods. This study aims to obtain accuracy results and see the performance of the algorithm. The classification algorithm used is the K-Nearest Neighbor (KNN) algorithm. The dataset used is PIDD. The dataset is divided into 80:20 for training data and testing data. This study performs k-fold cross validation. Based on the results of the study showed that the method used succeeded in obtaining high accuracy in predicting diabetes by 78.10%..

Creator

Diah Siti Fatimah Azzahrah, Alamsyah

Publisher

Universitas Semarang

Date

19 Oktober 2022

Contributor

Sri Wahyuni

Rights

ISSN: 2614-1205

Format

PDF

Language

Indonesian

Type

Text

Coverage

Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2022

Files

Tags

,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon , ,Repository, Repository Horizon University Indonesia, Repository Universitas Horizon Indonesia, Horizon.ac.id, Horizon University Indonesia, Universitas Horizon Indonesia, HorizonU, Repo Horizon ,

Citation

Diah Siti Fatimah Azzahrah, Alamsyah, “Prosiding Seminar Nasional Ilmu Komputer Universitas Semarang 2022
Klasifikasi Penyakit Diabetes Menggunakan Algoritma K-Nearest Neighbor Optimasi K-Fold Cross Validation,” Repository Horizon University Indonesia, accessed November 21, 2024, https://repository.horizon.ac.id/items/show/3509.